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Abstract

Given a Hilbert space H we present the construction and some properties of the column and
row Hilbert operator spaces Hc and Hr, respectively. The main proof of the survey is showing that
C B(Hc,Kc) is completely isometric to B(H ,K ), in other words, the completely bounded maps be-
tween the corresponding column Hilbert operator spaces is completely isometric to the bounded operators
between the Hilbert spaces. A similar theorem for the row Hilbert operator spaces follows via duality
of the operator spaces. In particular there exists a natural duality between the column and row Hilbert
operator spaces which we also show. The presentation and proofs are due to Effros and Ruan [1].

1 The Column Hilbert Operator Space

Given a Hilbert space H , we define the column isometry C : H −→ B(C,H ) given by

ξ 7→ C(ξ)α := αξ, α ∈ C.

Then given any n ∈ N, we define the nth-matrix norm on Mn(H ), by

‖ξ‖c,n =
∥∥∥C(n)(ξ)

∥∥∥ , ξ ∈Mn(H ).

These are indeed operator space matrix norms by Ruan’s Representation theorem and thus we define the
column Hilbert operator space as

Hc =

(
H ,

{
‖·‖c,n

}
n∈N

)
.

It follows that given ξ ∈Mn(H ) we have that the adjoint operator of C(ξ) is given by

C(ξ)∗ : H −→ C, ζ 7→ (ζ| ξ) .

Suppose C(ξ)∗(ζ) = d, c ∈ C. Then we see that

cd = (c|C(ξ)∗(ζ)) = (cξ| ζ) = c (ζ| ξ) = (c| (ζ| ξ)) .

We are also able to compute the matrix norms on rectangular matrices. First note that for ξ, η ∈H ,

C(η)∗C(ξ)α = (αξ| η) = α (ξ| η) ,

thus giving us the operator C(η)∗C(ξ) := (ξ| η) .
Now, for m,n ∈ N, ξ ∈Mm,n(Hc), we have the induced amplification

C(m,n) : Mm,n(Hc) −→Mm,n(B(C,H )) ∼= B(Cn,H m),

and thus, we have ∥∥∥C(m,n)(ξ)
∥∥∥ =

∥∥∥C(m,n)(ξ)∗C(m,n)(ξ)
∥∥∥ 1

2

=
∥∥[C(ξij)]

∗
[C(ξij)]

∥∥ 1
2
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=

∥∥∥∥∥
[

n∑
`=1

C(ξ`i)
∗C(ξ`j)

]∥∥∥∥∥
1
2

=

∥∥∥∥∥
[

n∑
`=1

(ξ`j | ξ`i)

]∥∥∥∥∥
1
2

.

Note that we have used the isometry

ϕ : Mm,n(Hc) ∼= B(Cn,H m),

and since both structures are indeed operator spaces, we actually have that ϕ is a complete isometry of these
operator space structures. This is the case since for all p ∈ N,

Mp(Mm,n(Hc)) = Mpm,pn(Hc) ∼=ϕ B(Cpn,H pm) = Mp(B(Cn,H m)) ∼=ϕ(p) Mp(Mm,n(Hc)).

In particular we have
Mm,1(Hc) ∼= H m

c ,

completely isometrically since

Mm,1(Hc) ∼=C Mm,1(B(C,H )) ∼= B(C,H m) ∼=C H m
c .

C denotes the column isometry on the corresponding spaces. We now wish to present another method
for computing the matrix norms in the column Hilbert operator space. Suppose that α(h) ∈ Mn, with
(eh)1≤h≤p ⊂H orthonormal vectors. We then have∥∥∥∥∥∑

h

α(h) ⊗ eh

∥∥∥∥∥
c

=

∥∥∥∥∥
[∑

h

α
(h)
ij eh

]∥∥∥∥∥
c

=

∥∥∥∥∥C(n)

([∑
h

α
(h)
ij eh

])∥∥∥∥∥
=

∥∥∥∥∥
[
C

(∑
h

α
(h)
ij eh

)]∥∥∥∥∥
=

∥∥∥∥∥
[
C

(∑
h

α
(h)
ij eh

)]∗ [
C

(∑
h

α
(h)
ij eh

)]∥∥∥∥∥
1
2

=

∥∥∥∥∥
[∑

`

(∑
h

α
(h)
`j eh

∣∣∣∣∣∑
g

α
(g)
`i eg

)]∥∥∥∥∥
1
2

=

∥∥∥∥∥∥
∑
h,`

α
(h)
`j α

(h)
`i

∥∥∥∥∥∥
1
2

=

∥∥∥∥∥∑
h

α(h)∗α(h)

∥∥∥∥∥
1
2

=

∥∥∥∥∥∥∥
α

(1)

...
α(p)


∥∥∥∥∥∥∥ .

The same formula will also work for rectangular matrices.
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2 The Row Hilbert Operator Space

We now wish to present the row Hilbert operator space. Recall that given a Hilbert space H we have the
canonical isometry between the conjugate Hilbert space and its Banach dual given by

θ : H −→H ∗, ξ 7→ fξ, fξ(ζ) := (ζ| ξ) ,

and by the Riesz representation theorem we know that ‖fξ‖ = ‖ξ‖. Define the row isometry by

R : H −→H ∗∗ = B(H ∗,C) = B(H ,C), ζ 7→ R(ζ)(ξ) = θ(ξ)(ζ) = (ζ| ξ) .

Since B(H ,C) is an operator space, then we have an induced operator space structure on H . We define
the row Hilbert operator space as

Hr :=
(
H ,

{
‖·‖r,n

}
n

)
,

where if given ξ ∈Mn(H ), then

‖ξ‖r =
∥∥∥R(n)(ξ)

∥∥∥ , R(n) : Mn(H ) −→Mn(B(H ,C)) ∼= B(H
n
,Cn),

is the induced amplification. The adjoint operator of the row isometry is given by

R(ξ)∗ : C −→H , a 7→ aξ.

This is true since given ζ ∈H ,

(R(ξ)∗c| ζ
)

= cR(ξ)ζ = cθ(ζ)ξ = c (ξ| ζ) = c (ζ| ξ) =
(
cξ
∣∣ ζ) .

Thus, we have that for η, ξ ∈H , c ∈ C, then R(ξ) : H −→ C , R(η)∗ : C −→H , and

R(ξ)R(η)∗c = R(ξ)(cη) = c (ξ| η) ,

and thus R(ξ)R(η)∗ := (ξ| η) .
As we did with the column isometry, let us compute the rectangular matrix norm for the row Hilbert

operator space. Given ξ ∈Mm,n(Hr), we then have

‖ξ‖r =
∥∥∥R(m,n)(ξ)

∥∥∥ =
∥∥[R(ξij)] [R(ξij)]

∗∥∥ 1
2 =

∥∥∥∥∥
[
m∑
`=1

R(ξi`)R(ξj`)
∗

]∥∥∥∥∥
1
2

=

∥∥∥∥∥
[
m∑
`=1

(ξi`| ξj`)

]∥∥∥∥∥
1
2

.

We also see that
M1,n(Hr) ∼= M1,n(B(H ,C)) ∼= B(H

n
,C) ∼= H n

r .

As for the column Hilbert operator space, we have the very convenient method for computing the matrix
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norm. Letting α(h) ∈Mm, and (eh)1≤h≤p ⊂H orthonormal vectors, we have∥∥∥∥∥∑
h

α(h) ⊗ eh

∥∥∥∥∥
r

=

∥∥∥∥∥
[∑

h

α
(h)
ij eh

]∥∥∥∥∥
r

=

∥∥∥∥∥R(m)

([∑
h

α
(h)
ij eh

])∥∥∥∥∥
=

∥∥∥∥∥
[
R

(∑
h

α
(h)
ij eh

)]∥∥∥∥∥
=

∥∥∥∥∥
[
R

(∑
h

α
(h)
ij eh

)][
R

(∑
h

α
(h)
ij eh

)]∗∥∥∥∥∥
1
2

=

∥∥∥∥∥
[∑

`

(∑
h

α
(h)
i` eh

∣∣∣∣∣∑
g

α
(g)
j` eg

)]∥∥∥∥∥
1
2

=

∥∥∥∥∥∥
∑
`,h

α
(h)
i` α

(h)
j`

∥∥∥∥∥∥
1
2

=

∥∥∥∥∥∑
h

α(h)α(h)∗

∥∥∥∥∥
1
2

=
∥∥∥[α(1) · · ·α(p)

]∥∥∥ .
We point out the dualities between the column and row isometries;

C : H −→ B(C,H ), ξ 7→ C(ξ)α = αξ,

R : H −→H ∗∗ = B(H ,C), ξ 7→ R(ξ)(η) = (ξ| η) .

The corresponding adjoint mappings were defined for ξ ∈H as

C(ξ)∗ : H −→ C, ζ 7→ (ζ| ξ) ,
R(ξ)∗ : C −→H , α 7→ αξ.

This then gives us

C(η)∗C(ξ) := (ξ| η)

R(ξ)R(η)∗ := (ξ| η) .

Suppose now that we once again have an orthonormal set of vectors (eh)1≤h≤p ⊂ H . We will calculate
the column and row matrix norms on the row matrix

‖[e1 · · · ep]‖ ∈M1,n(H ).

Using our calculations as before, we know that

‖[e1 · · · ep]‖c =

∥∥∥∥∥∥
p∑
j=1

E1j ⊗ ej

∥∥∥∥∥∥
c

=

∥∥∥∥∥∥
p∑
j=1

Ej1E1j

∥∥∥∥∥∥
1
2

= ‖I‖
1
2 = 1.
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In contrast we see that

‖[e1 · · · ep]‖r =

∥∥∥∥∥∥
p∑
j=1

E1j ⊗ ej

∥∥∥∥∥∥
r

=

∥∥∥∥∥∥
p∑
j=1

E1jEj1

∥∥∥∥∥∥
1
2

=
√
p.

Thus, we do have that the induced operator space structures on the Hilbert space H by B(C,H ), and
B(H ,C) are indeed different. Suppose that dim H = 1, thus H = C. We then have that given ξ ∈ C, that

C(ξ)ζ = ζξ (1)

R(ξ)ζ = (ξ| ζ) = ξζ. (2)

In particular we see that both the column and row isometries are just the multiplication action of the vector
ξ. This then tells us that for ξ ∈Mn, that ‖ξ‖c = ‖ξ‖r = ‖[ξij ]‖ .

Proposition 2.1. Given two Hilbert spaces H ,K , then we have the completely isometric identification

B(H ,K ) ∼= C B(Hc,Kc).

Proof. Let T = [Tkl] ∈Mn(B(H ,K )) ∼= B(H n,K n), and with this we define the induced operator

T̃ ∈Mn(C B(Hc,Kc)) ∼= C B(Hc,Mn(Kc)),

defined by
Hc 3 ξ 7→T̃ [Tkl(ξ)] ∈Mn(Kc).

Now, given ξ ∈ Mp(Hc) we may assume that ξ =
∑r
j=1 αj ⊗ fj , where (fj)

r
j=1 ⊂ H are orthonormal

vectors. Let Ho = spanj fj and let Ko = spank,l Tkl(Ho) and let (gi)
q
i=1 ⊂ Ko be an orthonormal basis for

Ko. We define the following complex numbers Tkl(i, j) as the coefficients given by

Tkl(fj) =
∑
i

Tkl(i, j)gi,

and we set To(i, j) = [Tkl(i, j)]k,l ∈ Mn, To = [To(i, j)]i,j ∈ Mnq,nr. We see that ‖To‖ ≤ ‖T‖ since To is
merely the restriction of T to H n

o . Define the following pth-amplification

T̃ (p) = IdMp
⊗ T̃ : Mp ⊗Hc −→Mp ⊗Mn ⊗Kc.

Then we compute

T̃ (p)(ξ) =
∑
j

αj ⊗ T̃ (fj) =
∑
j

αj ⊗
∑
k,l

Ekl ⊗ Tkl(fj)

=
∑
i,j,k,l

αj ⊗ Ekl ⊗ Tkl(i, j)gi =
∑
i,j,k,l

αj ⊗ Tkl(i, j)Ekl ⊗ gi =
∑
i,j

αj ⊗ To(i, j)⊗ gi ∈Mp ⊗Mn ⊗Kc.

Thus, in computing the norm we see

∥∥∥T̃ (p)(ξ)
∥∥∥
Mpn(Kc)

=

∥∥∥∥∥∥∥

∑
j αj ⊗ To(1, j)

...∑
j αj ⊗ To(q, j)


∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
IdMp

⊗To(1, 1) · · · IdMp
⊗To(1, r)

...
...

IdMp
⊗To(q, 1) · · · IdMp

⊗To(q, r)


α1 ⊗ IdMn

...
αr ⊗ IdMn


∥∥∥∥∥∥∥

≤
∥∥IdMp

⊗To
∥∥
∥∥∥∥∥∥∥
α1 ⊗ IdMn

...
αr ⊗ IdMn


∥∥∥∥∥∥∥ ≤ ‖T‖ ‖ξ‖Mp(Hc)

.
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We then have
∥∥∥T̃∥∥∥

cb
≤ ‖T‖ .

We need only show now that ‖T‖ ≤
∥∥∥T̃∥∥∥

cb
. Begin by taking ξ = (ξl)l ∈ H n. Recall that we have the

identification
Mn,1(Hc) ∼= Mn,1(B(C,H )) ∼= B(C,H n) ∼= H n

c .

Let (ej)
p
j=1 ⊂ H be an orthonormal basis for spanl ξl, and therefore we know that we may write for each

l, 1 ≤ l ≤ n,

ξ` =

p∑
j=1

(ξ| ej) ej ,
∑
| (ξ| ej)|2 = ‖ξ‖2 .

Now, T = [Tkl] ∈Mn(B(H ,K )), and thus we see that

T (ξ) =

∑
l,j

Tkl(ej) (ξl| ej)

 ∈Mn,1(Kc).

Thus, at this point we decompose the matrix as

∑
l,j

Tkl(ej) (ξl| ej)

 =
[
[Tkl(e1)]kl · · · [Tkl(ep)]kl

]


(ξ1| e1)
...

(ξl| ej)
...

(ξn| ep)

 ,

where

[
[Tkl(e1)]kl · · · [Tkl(ep)]kl

]
∈Mn,np(Kc),



(ξ1| e1)
...

(ξl| ej)
...

(ξn| ep)

 ∈Mnp,1.

We have the induced map T̃ : Hc −→Mn(Kc), ζ 7→ [Tkl(ζ)] , and therefore the first matrix becomes

T̃ (1,p)([e1 · · · ep]),

and if we write the coefficient matrix as
[ (ξl| ej)]l,j ,

then we have the following inequalities;

‖T (ξ)‖ ≤
∥∥∥T̃ (1,p)([e1 · · · ep])

∥∥∥ ‖[ (ξl| ej)]‖ ≤ ∥∥∥T̃∥∥∥
cb
‖[e1 · · · ep]‖c ‖ξ‖ =

∥∥∥T̃∥∥∥
cb
‖ξ‖ .

Thus, we have the desired equality and have shown that bounded linear operators between two Hilbert
spaces are completely isometric to the completely bounded maps between the corresponding column Hilbert
operator spaces.

We now have the following dualities;

(Hc)
∗ ∼= C B(Hc,C) ∼= B(H ,C) ∼= B(H ∗∗,C) ∼= B(H ∗,C) ∼= (H ∗)r.

Letting K = H ∗, we then have
(Kr)

∗ ∼= H ∗∗
c
∼= Hc

∼= (K ∗)c,

where these dualites are complete isometries.
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Proposition 2.2. Given two Hilbert spaces H ,K we have the following completely isometric identification;

B(K ∗,H ∗) ∼= C B(Hr,Kr).

By our dualites already stated, we then have the completely isometric identifications

(Hc)
∗ ∼= (H ∗)r ∼= (H )r.

Proposition 2.3. Given two Hilbert spaces H ,K , we have the completely isometric identification

Hc
∼= (H )c,Hr

∼= (H )r.

References

[1] Edward G Effros and Zhong-Jin Ruan. Operator spaces. 2000.

7


	The Column Hilbert Operator Space
	The Row Hilbert Operator Space

