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Abstract

Given a Hilbert space . we present the construction and some properties of the column and
row Hilbert operator spaces . and 7., respectively. The main proof of the survey is showing that
CAB(:, %:) is completely isometric to B(I, %), in other words, the completely bounded maps be-
tween the corresponding column Hilbert operator spaces is completely isometric to the bounded operators
between the Hilbert spaces. A similar theorem for the row Hilbert operator spaces follows via duality
of the operator spaces. In particular there exists a natural duality between the column and row Hilbert
operator spaces which we also show. The presentation and proofs are due to Effros and Ruan [1].

1 The Column Hilbert Operator Space
Given a Hilbert space 5, we define the column isometry C : 5 — PB(C, ) given by
¢ C®a:=a,acC.
Then given any n € N, we define the nth-matrix norm on M, (), by
el = € @)

These are indeed operator space matrix norms by Ruan’s Representation theorem and thus we define the

column Hilbert operator space as
% = <%v {”.“C’n}nEN> .

It follows that given & € M,, () we have that the adjoint operator of C'(§) is given by

& € My (7).

CE)": A — C,(— (¢[€).
Suppose C(£)*(¢) = d, ¢ € C. Then we see that
cd = (c[C(€)"(¢) = (€] ) = ¢ (¢[€) = (c] (¢]€))-
We are also able to compute the matrix norms on rectangular matrices. First note that for £,7 € A,
Cn)*C()a = (afln) = a ([n),

thus giving us the operator C(n)*C(&) := (&|n) .
Now, for m,n € N,§ € My, (), we have the induced amplification

CU™™ s My o (H2) — Mo (B(C, ) = B(C", ™),
and thus, we have
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Note that we have used the isometry

lz (6ej] &es ]
=1

and since both structures are indeed operator spaces, we actually have that ¢ is a complete isometry of these
operator space structures. This is the case since for all p € N,

My (Mo (H2)) = Mpm pn(H2) = B(CP", ™) = Myp(B(C", ™)) = o0 Myp(Mi,n ()

In particular we have

Mm 1(%) = %m’

’ C

completely isometrically since

M 1 (H2) S0 Mm 1 (B(C, ) = B(C, A™) =c A"

(6]

C' denotes the column isometry on the corresponding spaces. We now wish to present another method
for computing the matrix norms in the column Hilbert operator space. Suppose that o™ € M, with
(en)i<h<p C J€ orthonormal vectors. We then have
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The same formula will also work for rectangular matrices.



2 The Row Hilbert Operator Space

We now wish to present the row Hilbert operator space. Recall that given a Hilbert space 4 we have the
canonical isometry between the conjugate Hilbert space and its Banach dual given by

0:H — A€ [e, fo(C) = (C[€),
and by the Riesz representation theorem we know that || f¢|| = ||£]|. Define the row isometry by
R: A — A = B(AH*,C) = B(H,C),¢ ~ R(C)(E) = 0(E)(C) = (¢]€).

Since %(#, C) is an operator space, then we have an induced operator space structure on .. We define
the row Hilbert operator space as
thn},)
n

e o
where if given & € M, (), then
léll, = [B©) | B« Mo () — M, (5. C)) = (" ),
is the induced amplification. The adjoint operator of the row isometry is given by
R(&)* :C — ,a > af.

This is true since given ( € JZ,

(R(€)"¢| C) = cR(&)¢ = eB({)E = ¢ (€]C) = ¢ (¢|€) = (c€[C) -
Thus, we have that for n,£ € #,c € C, then R(¢) : # — €, R(n)* : C — 7, and

R(§R(1n) c = R(E)(cn) = ¢ (&]n),

and thus R()R(n)* == (¢]n)
As we did with the column isometry, let us compute the rectangular matrix norm for the row Hilbert
operator space. Given § € M,, ,,(-%4.), we then have

My, (56) = My, (B(H,C)) = BA",C) = A"
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We also see that

As for the column Hilbert operator space, we have the very convenient method for computing the matrix



norm. Letting ah) ¢ M., and (en)1<n<p C € orthonormal vectors, we have
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We point out the dualities between the column and row isometries;

C:H — B(C, ), C&a=a,
R:H — K = B(H,C),&— R(E)M) = (&]n).

The corresponding adjoint mappings were defined for £ € 57 as

CE) A — C, (= (Cl8),
R(&)*:C — J,a+ af.

This then gives us

C(n)*C(§) = (&In)
R(§R(n)" == (&ln).

Suppose now that we once again have an orthonormal set of vectors (ep)1<n<p C . We will calculate
the column and row matrix norms on the row matrix

lfer---ep]ll € Myn ().

Using our calculations as before, we know that
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In contrast we see that
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Thus, we do have that the induced operator space structures on the Hilbert space 2 by %(C, ), and
PB(,C) are indeed different. Suppose that dim .5Z” = 1, thus ¢ = C. We then have that given ¢ € C, that

)¢ =¢¢ (1)
R(§)¢ = (£]¢) = & (2)

In particular we see that both the column and row isometries are just the multiplication action of the vector
&. This then tells us that for § € M, that |€]|. = [|£]],. = ||[&;]Il -

Proposition 2.1. Given two Hilbert spaces 7, %, then we have the completely isometric identification
B, H) = CRB(A, H).
Proof. Let T = [Ty] € M, (B, X)) = B(A™, #™), and with this we define the induced operator
T € M, (CB(H, H2)) = CB(Hoy My (),

defined by
He 3§ g [Ta(§)] € My ().

Now, given { € M,(4) we may assume that & = Z;Zl aj ® f;, where (f;)j_; C S are orthonormal
vectors. Let /7, = span, fj and let %, = spany, Ty () and let (g;)7_; C ¥, be an orthonormal basis for
H,. We define the following complex numbers Ty (i, j) as the coefficients given by

T (f5) ZTkl i,7)Gis

and we set Tp(i,5) = [Thi(d,5)]y; € My, To = [To(i,5);; € Mngnr- We see that ||T,| < [|T']| since T, is
merely the restriction of T" to 7" Define the following pth-amplification

T® =Tdy, @T : My, @ Hi — M, @ M, @ K.
Then we compute

f(l’) Z%@T fi) Za]@)ZEM@Tkl fi)

=Y GO®Bu@Tu(i,j)gi= Y a;@Tuli,j)En©g =) a;@T,(i,j) ® g € My @ M, ® He.
,5,k,1 4,7,k,1 ,J

Thus, in computing the norm we see

Zj Qi ®To(17j) Ide ®T0(171) Ide ®T0(17T) ai ®IdMn
T H — : = : : ;
e, ., - . : .
EJ (X] ® TO(Q?J) Ide ®T0(Q7 1) T Ide ®T0(qa T) aT' ® IdMn
a1 ® IdMn
< ||1dag, T, || : <NTNIEN pr, ) -
o ® Idpy,



We then have Hf

<im).
We need only show now that ||T]| < Hf” ) Begin by taking & = (§); € ™. Recall that we have the

identification
Mp1(5) =2 M, 1(B(C, ) = B(C, ") = A0

Let (ej)le C € be an orthonormal basis for span; §;, and therefore we know that we may write for each
1,1 <1 <n,

)

p
E= (Ele) e,y [(Elen)l = lIEl*
j=1
Now, T' = [Ty] € M, (B(,)), and thus we see that
T(€) = | > Tule)) (&le;) | € My (o).
L,j

Thus, at this point we decompose the matrix as

[(&1ler)
> Tule) (Gle;) | = [[Talen)ly - [Tralep)ly] (§l|.€j) ,
l,j :

| (nlep)
where

(€1ler)]

“Tkl(el)]kz to [Tkl(ep)}kl] € Mn,np(l/c)a (gl ‘.ej) € an,l'

(&nlep) ]
We have the induced map T: 5 — M, (), ¢ — [T11(€)], and therefore the first matrix becomes
TP ey - -ep)),

and if we write the coefficient matrix as
[(&leil;

then we have the following inequalities;

IT©N < |7 (ler e || Il el < 7| Nev--eplll el = | 7] , nel-

Thus, we have the desired equality and have shown that bounded linear operators between two Hilbert
spaces are completely isometric to the completely bounded maps between the corresponding column Hilbert
operator spaces. O

We now have the following dualities;
(H2)* = CB(H,T) = B(H,C) = BA™ ,C) = B, C) = (H7),.

Letting ¢ = 2, we then have
()" A 2 = (K.

where these dualites are complete isometries.



Proposition 2.2. Given two Hilbert spaces 7€, % we have the following completely isometric identification;
B(A T, HT) = CH(H ).
By our dualites already stated, we then have the completely isometric identifications
(He)* = (A7) = (H).

Proposition 2.3. Given two Hilbert spaces 7€, % , we have the completely isometric identification
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