The Column and Row Hilbert Operator Spaces

Roy M. Araiza
Department of Mathematics
Purdue University

Abstract

Given a Hilbert space \mathscr{H} we present the construction and some properties of the column and row Hilbert operator spaces \mathscr{H}_{c} and \mathscr{H}_{r}, respectively. The main proof of the survey is showing that $\mathscr{C} \mathscr{B}\left(\mathscr{H}_{c}, \mathscr{K}_{c}\right)$ is completely isometric to $\mathscr{B}(\mathscr{H}, \mathscr{K})$, in other words, the completely bounded maps between the corresponding column Hilbert operator spaces is completely isometric to the bounded operators between the Hilbert spaces. A similar theorem for the row Hilbert operator spaces follows via duality of the operator spaces. In particular there exists a natural duality between the column and row Hilbert operator spaces which we also show. The presentation and proofs are due to Effros and Ruan [1].

1 The Column Hilbert Operator Space

Given a Hilbert space \mathscr{H}, we define the column isometry $C: \mathscr{H} \longrightarrow \mathscr{B}(\mathbb{C}, \mathscr{H})$ given by

$$
\xi \mapsto C(\xi) \alpha:=\alpha \xi, \alpha \in \mathbb{C} .
$$

Then given any $n \in \mathbb{N}$, we define the nth-matrix norm on $M_{n}(\mathscr{H})$, by

$$
\|\xi\|_{c, n}=\left\|C^{(n)}(\xi)\right\|, \xi \in M_{n}(\mathscr{H}) .
$$

These are indeed operator space matrix norms by Ruan's Representation theorem and thus we define the column Hilbert operator space as

$$
\mathscr{H}_{c}=\left(\mathscr{H},\left\{\|\cdot\|_{c, n}\right\}_{n \in \mathbb{N}}\right) .
$$

It follows that given $\xi \in M_{n}(\mathscr{H})$ we have that the adjoint operator of $C(\xi)$ is given by

$$
C(\xi)^{*}: \mathscr{H} \longrightarrow \mathbb{C}, \zeta \mapsto(\zeta \mid \xi) .
$$

Suppose $C(\xi)^{*}(\zeta)=d, c \in \mathbb{C}$. Then we see that

$$
c \bar{d}=\left(c \mid C(\xi)^{*}(\zeta)\right)=(c \xi \mid \zeta)=c \overline{(\zeta \mid \xi)}=(c \mid(\zeta \mid \xi)) .
$$

We are also able to compute the matrix norms on rectangular matrices. First note that for $\xi, \eta \in \mathscr{H}$,

$$
C(\eta)^{*} C(\xi) \alpha=(\alpha \xi \mid \eta)=\alpha(\xi \mid \eta),
$$

thus giving us the operator $C(\eta)^{*} C(\xi):=(\xi \mid \eta)$.
Now, for $m, n \in \mathbb{N}, \xi \in M_{m, n}\left(\mathscr{H}_{c}\right)$, we have the induced amplification

$$
C^{(m, n)}: M_{m, n}\left(\mathscr{H}_{c}\right) \longrightarrow M_{m, n}(\mathscr{B}(\mathbb{C}, \mathscr{H})) \cong \mathscr{B}\left(\mathbb{C}^{n}, \mathscr{H}^{m}\right),
$$

and thus, we have

$$
\left\|C^{(m, n)}(\xi)\right\|=\left\|C^{(m, n)}(\xi)^{*} C^{(m, n)}(\xi)\right\|^{\frac{1}{2}}=\left\|\left[C\left(\xi_{i j}\right)\right]^{*}\left[C\left(\xi_{i j}\right)\right]\right\|^{\frac{1}{2}}
$$

$$
=\left\|\left[\sum_{\ell=1}^{n} C\left(\xi_{\ell i}\right)^{*} C\left(\xi_{\ell j}\right)\right]\right\|^{\frac{1}{2}}=\left\|\left[\sum_{\ell=1}^{n}\left(\xi_{\ell j} \mid \xi_{\ell i}\right)\right]\right\|^{\frac{1}{2}}
$$

Note that we have used the isometry

$$
\varphi: M_{m, n}\left(\mathscr{H}_{c}\right) \cong \mathscr{B}\left(\mathbb{C}^{n}, \mathscr{H}^{m}\right)
$$

and since both structures are indeed operator spaces, we actually have that φ is a complete isometry of these operator space structures. This is the case since for all $p \in \mathbb{N}$,

$$
M_{p}\left(M_{m, n}\left(\mathscr{H}_{c}\right)\right)=M_{p m, p n}\left(\mathscr{H}_{c}\right) \cong_{\varphi} \mathscr{B}\left(\mathbb{C}^{p n}, \mathscr{H}^{p m}\right)=M_{p}\left(\mathscr{B}\left(\mathbb{C}^{n}, \mathscr{H}^{m}\right)\right) \cong_{\varphi(p)} M_{p}\left(M_{m, n}\left(\mathscr{H}_{c}\right)\right)
$$

In particular we have

$$
M_{m, 1}\left(\mathscr{H}_{c}\right) \cong \mathscr{H}_{c}^{m}
$$

completely isometrically since

$$
M_{m, 1}\left(\mathscr{H}_{c}\right) \cong_{C} M_{m, 1}(\mathscr{B}(\mathbb{C}, \mathscr{H})) \cong \mathscr{B}\left(\mathbb{C}, \mathscr{H}^{m}\right) \cong_{C} \mathscr{H}_{c}^{m}
$$

C denotes the column isometry on the corresponding spaces. We now wish to present another method for computing the matrix norms in the column Hilbert operator space. Suppose that $\alpha^{(h)} \in M_{n}$, with $\left(e_{h}\right)_{1 \leq h \leq p} \subset \mathscr{H}$ orthonormal vectors. We then have

$$
\begin{aligned}
\left\|\sum_{h} \alpha^{(h)} \otimes e_{h}\right\|_{c} & =\left\|\left[\sum_{h} \alpha_{i j}^{(h)} e_{h}\right]\right\|_{c} \\
& =\left\|C^{(n)}\left(\left[\sum_{h} \alpha_{i j}^{(h)} e_{h}\right]\right)\right\| \\
& =\left\|\left[C\left(\sum_{h} \alpha_{i j}^{(h)} e_{h}\right)\right]\right\| \\
& =\left\|\left[C\left(\sum_{h} \alpha_{i j}^{(h)} e_{h}\right)\right]^{*}\left[C\left(\sum_{h} \alpha_{i j}^{(h)} e_{h}\right)\right]\right\|^{\frac{1}{2}} \\
& =\left\|\left[\sum_{\ell}\left(\sum_{h} \alpha_{\ell j}^{(h)} e_{h} \mid \sum_{g} \alpha_{\ell i}^{(g)} e_{g}\right)\right]\right\|^{\frac{1}{2}} \\
& \left.=\left\|\left[\sum_{h, \ell} \alpha_{\ell j}^{(h)} \bar{\alpha}_{\ell i}^{(h)}\right]\right\|^{\frac{1}{2}}\right] \\
& =\left\|\sum_{h} \alpha^{(h) *} \alpha^{(h)}\right\|^{\frac{1}{2}} \\
& =\left\|\left[\begin{array}{l}
\alpha^{(1)} \\
\vdots \\
\alpha^{(p)}
\end{array}\right]\right\|
\end{aligned}
$$

The same formula will also work for rectangular matrices.

2 The Row Hilbert Operator Space

We now wish to present the row Hilbert operator space. Recall that given a Hilbert space \mathscr{H} we have the canonical isometry between the conjugate Hilbert space and its Banach dual given by

$$
\theta: \overline{\mathscr{H}} \longrightarrow \mathscr{H}^{*}, \bar{\xi} \mapsto f_{\xi}, f_{\xi}(\zeta):=(\zeta \mid \xi)
$$

and by the Riesz representation theorem we know that $\left\|f_{\xi}\right\|=\|\xi\|$. Define the row isometry by

$$
R: \mathscr{H} \longrightarrow \mathscr{H}^{* *}=\mathscr{B}\left(\mathscr{H}^{*}, \mathbb{C}\right)=\mathscr{B}(\overline{\mathscr{H}}, \mathbb{C}), \zeta \mapsto R(\zeta)(\bar{\xi})=\theta(\bar{\xi})(\zeta)=(\zeta \mid \xi)
$$

Since $\mathscr{B}(\overline{\mathscr{H}}, \mathbb{C})$ is an operator space, then we have an induced operator space structure on \mathscr{H}. We define the row Hilbert operator space as

$$
\mathscr{H}_{r}:=\left(\mathscr{H},\left\{\|\cdot\|_{r, n}\right\}_{n}\right)
$$

where if given $\xi \in M_{n}(\mathscr{H})$, then

$$
\|\xi\|_{r}=\left\|R^{(n)}(\xi)\right\|, R^{(n)}: M_{n}(\mathscr{H}) \longrightarrow M_{n}(\mathscr{B}(\overline{\mathscr{H}}, \mathbb{C})) \cong \mathscr{B}\left(\overline{\mathscr{H}}^{n}, \mathbb{C}^{n}\right)
$$

is the induced amplification. The adjoint operator of the row isometry is given by

$$
R(\xi)^{*}: \mathbb{C} \longrightarrow \overline{\mathscr{H}}, a \mapsto a \bar{\xi}
$$

This is true since given $\zeta \in \mathscr{H}$,

$$
\left(R(\xi)^{*} c \mid \bar{\zeta}\right)=c \overline{R(\xi) \bar{\zeta}}=c \overline{\theta(\bar{\zeta}) \xi}=c \overline{(\xi \mid \zeta)}=c(\zeta \mid \xi)=(c \bar{\xi} \mid \bar{\zeta})
$$

Thus, we have that for $\eta, \xi \in \mathscr{H}, c \in \mathbb{C}$, then $R(\xi): \overline{\mathscr{H}} \longrightarrow \mathscr{C}, R(\eta)^{*}: \mathbb{C} \longrightarrow \overline{\mathscr{H}}$, and

$$
R(\xi) R(\eta)^{*} c=R(\xi)(c \bar{\eta})=c(\xi \mid \eta),
$$

and thus $R(\xi) R(\eta)^{*}:=(\xi \mid \eta)$.
As we did with the column isometry, let us compute the rectangular matrix norm for the row Hilbert operator space. Given $\xi \in M_{m, n}\left(\mathscr{H}_{r}\right)$, we then have

$$
\|\xi\|_{r}=\left\|R^{(m, n)}(\xi)\right\|=\left\|\left[R\left(\xi_{i j}\right)\right]\left[R\left(\xi_{i j}\right)\right]^{*}\right\|^{\frac{1}{2}}=\left\|\left[\sum_{\ell=1}^{m} R\left(\xi_{i \ell}\right) R\left(\xi_{j \ell}\right)^{*}\right]\right\|^{\frac{1}{2}}=\left\|\left[\sum_{\ell=1}^{m}\left(\xi_{i \ell} \mid \xi_{j \ell}\right)\right]\right\|^{\frac{1}{2}}
$$

We also see that

$$
M_{1, n}\left(\mathscr{H}_{r}\right) \cong M_{1, n}(\mathscr{B}(\overline{\mathscr{H}}, \mathbb{C})) \cong \mathscr{B}\left(\overline{\mathscr{H}}^{n}, \mathbb{C}\right) \cong \mathscr{H}_{r}^{n}
$$

As for the column Hilbert operator space, we have the very convenient method for computing the matrix
norm. Letting $\alpha^{(h)} \in M_{m}$, and $\left(e_{h}\right)_{1 \leq h \leq p} \subset \mathscr{H}$ orthonormal vectors, we have

$$
\begin{aligned}
\left\|\sum_{h} \alpha^{(h)} \otimes e_{h}\right\|_{r} & =\left\|\left[\sum_{h} \alpha_{i j}^{(h)} e_{h}\right]\right\|_{r} \\
& =\left\|R^{(m)}\left(\left[\sum_{h} \alpha_{i j}^{(h)} e_{h}\right]\right)\right\| \\
& =\left\|\left[R\left(\sum_{h} \alpha_{i j}^{(h)} e_{h}\right)\right]\right\| \\
& =\left\|\left[R\left(\sum_{h} \alpha_{i j}^{(h)} e_{h}\right)\right]\left[R\left(\sum_{h} \alpha_{i j}^{(h)} e_{h}\right)\right]^{*}\right\|^{\frac{1}{2}} \\
& =\left\|\left[\sum_{\ell}\left(\sum_{h} \alpha_{i \ell}^{(h)} e_{h} \mid \sum_{g} \alpha_{j \ell}^{(g)} e_{g}\right)\right]\right\|^{\frac{1}{2}} \\
& =\left\|\left[\sum_{\ell, h} \alpha_{i \ell}^{(h)} \bar{\alpha}_{j \ell}^{(h)}\right]\right\|^{\frac{1}{2}} \\
& =\left\|\sum_{h} \alpha^{(h)} \alpha^{(h) *}\right\|^{\frac{1}{2}} \\
& =\left\|\left[\alpha^{(1)} \ldots \alpha^{(p)}\right]\right\|^{2}
\end{aligned}
$$

We point out the dualities between the column and row isometries;

$$
\begin{aligned}
& C: \mathscr{H} \longrightarrow \mathscr{B}(\mathbb{C}, \mathscr{H}), \xi \mapsto C(\xi) \alpha=\alpha \xi \\
& R: \mathscr{H} \longrightarrow \mathscr{H}^{* *}=\mathscr{B}(\overline{\mathscr{H}}, \mathbb{C}), \xi \mapsto R(\xi)(\bar{\eta})=(\xi \mid \eta) .
\end{aligned}
$$

The corresponding adjoint mappings were defined for $\xi \in \mathscr{H}$ as

$$
\begin{aligned}
& C(\xi)^{*}: \mathscr{H} \longrightarrow \mathbb{C}, \zeta \mapsto(\zeta \mid \xi) \\
& R(\xi)^{*}: \mathbb{C} \longrightarrow \overline{\mathscr{H}}, \alpha \mapsto \alpha \bar{\xi}
\end{aligned}
$$

This then gives us

$$
\begin{aligned}
& C(\eta)^{*} C(\xi):=(\xi \mid \eta) \\
& R(\xi) R(\eta)^{*}:=(\xi \mid \eta)
\end{aligned}
$$

Suppose now that we once again have an orthonormal set of vectors $\left(e_{h}\right)_{1 \leq h \leq p} \subset \mathscr{H}$. We will calculate the column and row matrix norms on the row matrix

$$
\left\|\left[e_{1} \cdots e_{p}\right]\right\| \in M_{1, n}(\mathscr{H})
$$

Using our calculations as before, we know that

$$
\left\|\left[e_{1} \cdots e_{p}\right]\right\|_{c}=\left\|\sum_{j=1}^{p} E_{1 j} \otimes e_{j}\right\|_{c}=\left\|\sum_{j=1}^{p} E_{j 1} E_{1 j}\right\|^{\frac{1}{2}}=\|I\|^{\frac{1}{2}}=1
$$

In contrast we see that

$$
\left\|\left[e_{1} \cdots e_{p}\right]\right\|_{r}=\left\|\sum_{j=1}^{p} E_{1 j} \otimes e_{j}\right\|_{r}=\left\|\sum_{j=1}^{p} E_{1 j} E_{j 1}\right\|^{\frac{1}{2}}=\sqrt{p}
$$

Thus, we do have that the induced operator space structures on the Hilbert space \mathscr{H} by $\mathscr{B}(\mathbb{C}, \mathscr{H})$, and $\mathscr{B}(\overline{\mathscr{H}}, \mathbb{C})$ are indeed different. Suppose that $\operatorname{dim} \mathscr{H}=1$, thus $\mathscr{H}=\mathbb{C}$. We then have that given $\xi \in \mathbb{C}$, that

$$
\begin{align*}
& C(\xi) \zeta=\zeta \xi \tag{1}\\
& R(\xi) \bar{\zeta}=(\xi \mid \zeta)=\xi \bar{\zeta} \tag{2}
\end{align*}
$$

In particular we see that both the column and row isometries are just the multiplication action of the vector ξ. This then tells us that for $\xi \in M_{n}$, that $\|\xi\|_{c}=\|\xi\|_{r}=\left\|\left[\xi_{i j}\right]\right\|$.

Proposition 2.1. Given two Hilbert spaces \mathscr{H}, \mathscr{K}, then we have the completely isometric identification

$$
\mathscr{B}(\mathscr{H}, \mathscr{K}) \cong \mathscr{C} \mathscr{B}\left(\mathscr{H}_{c}, \mathscr{K}_{c}\right)
$$

Proof. Let $T=\left[T_{k l}\right] \in M_{n}(\mathscr{B}(\mathscr{H}, \mathscr{K})) \cong \mathscr{B}\left(\mathscr{H}^{n}, \mathscr{K}^{n}\right)$, and with this we define the induced operator

$$
\widetilde{T} \in M_{n}\left(\mathscr{C} \mathscr{B}\left(\mathscr{H}_{c}, \mathscr{K}_{c}\right)\right) \cong \mathscr{C} \mathscr{B}\left(\mathscr{H}_{c}, M_{n}\left(\mathscr{K}_{c}\right)\right),
$$

defined by

$$
\mathscr{H}_{c} \ni \xi \mapsto_{\widetilde{T}}\left[T_{k l}(\xi)\right] \in M_{n}\left(\mathscr{K}_{c}\right) .
$$

Now, given $\xi \in M_{p}\left(\mathscr{H}_{c}\right)$ we may assume that $\xi=\sum_{j=1}^{r} \alpha_{j} \otimes f_{j}$, where $\left(f_{j}\right)_{j=1}^{r} \subset \mathscr{H}$ are orthonormal vectors. Let $\mathscr{H}_{o}=\operatorname{span}_{j} f_{j}$ and let $\mathscr{K}_{o}=\operatorname{span}_{k, l} T_{k l}\left(\mathscr{H}_{o}\right)$ and let $\left(g_{i}\right)_{i=1}^{q} \subset \mathscr{K}_{o}$ be an orthonormal basis for \mathscr{K}_{o}. We define the following complex numbers $T_{k l}(i, j)$ as the coefficients given by

$$
T_{k l}\left(f_{j}\right)=\sum_{i} T_{k l}(i, j) g_{i}
$$

and we set $T_{o}(i, j)=\left[T_{k l}(i, j)\right]_{k, l} \in M_{n}, T_{o}=\left[T_{o}(i, j)\right]_{i, j} \in M_{n q, n r}$. We see that $\left\|T_{o}\right\| \leq\|T\|$ since T_{o} is merely the restriction of T to \mathscr{H}_{o}^{n}. Define the following pth-amplification

$$
\widetilde{T}^{(p)}=\operatorname{Id}_{M_{p}} \otimes \widetilde{T}: M_{p} \otimes \mathscr{H}_{c} \longrightarrow M_{p} \otimes M_{n} \otimes \mathscr{K}_{c} .
$$

Then we compute

$$
\begin{gathered}
\widetilde{T}^{(p)}(\xi)=\sum_{j} \alpha_{j} \otimes \widetilde{T}\left(f_{j}\right)=\sum_{j} \alpha_{j} \otimes \sum_{k, l} E_{k l} \otimes T_{k l}\left(f_{j}\right) \\
=\sum_{i, j, k, l} \alpha_{j} \otimes E_{k l} \otimes T_{k l}(i, j) g_{i}=\sum_{i, j, k, l} \alpha_{j} \otimes T_{k l}(i, j) E_{k l} \otimes g_{i}=\sum_{i, j} \alpha_{j} \otimes T_{o}(i, j) \otimes g_{i} \in M_{p} \otimes M_{n} \otimes \mathscr{K}_{c} .
\end{gathered}
$$

Thus, in computing the norm we see

$$
\begin{gathered}
\left\|\widetilde{T}^{(p)}(\xi)\right\|_{M_{p n}\left(\mathscr{K}_{c}\right)}=\left\|\left[\begin{array}{ccc}
\sum_{j} \alpha_{j} \otimes T_{o}(1, j) \\
\vdots \\
\sum_{j} \alpha_{j} \otimes T_{o}(q, j)
\end{array}\right]\right\|=\left\|\left[\begin{array}{ccc}
\operatorname{Id}_{M_{p}} \otimes T_{o}(1,1) & \cdots & \operatorname{Id}_{M_{p}} \otimes T_{o}(1, r) \\
\vdots & & \vdots \\
\operatorname{Id}_{M_{p}} \otimes T_{o}(q, 1) & \cdots & \operatorname{Id}_{M_{p}} \otimes T_{o}(q, r)
\end{array}\right]\left[\begin{array}{c}
\alpha_{1} \otimes \operatorname{Id}_{M_{n}} \\
\vdots \\
\alpha_{r} \otimes \operatorname{Id}_{M_{n}}
\end{array}\right]\right\| \\
\leq\left\|\operatorname{Id}_{M_{p}} \otimes T_{o}\right\|\left\|\left[\begin{array}{c}
\alpha_{1} \otimes \operatorname{Id}_{M_{n}} \\
\vdots \\
\alpha_{r} \otimes \operatorname{Id}_{M_{n}}
\end{array}\right]\right\| \leq\|T\|\|\xi\|_{M_{p}\left(\mathscr{H}_{c}\right)} .
\end{gathered}
$$

We then have $\|\widetilde{T}\|_{c b} \leq\|T\|$.
We need only show now that $\|T\| \leq\|\widetilde{T}\|_{c b}$. Begin by taking $\xi=\left(\xi_{l}\right)_{l} \in \mathscr{H}^{n}$. Recall that we have the identification

$$
M_{n, 1}\left(\mathscr{H}_{c}\right) \cong M_{n, 1}(\mathscr{B}(\mathbb{C}, \mathscr{H})) \cong \mathscr{B}\left(\mathbb{C}, \mathscr{H}^{n}\right) \cong \mathscr{H}_{c}^{n}
$$

Let $\left(e_{j}\right)_{j=1}^{p} \subset \mathscr{H}$ be an orthonormal basis for $\operatorname{span}_{l} \xi_{l}$, and therefore we know that we may write for each $l, 1 \leq l \leq n$,

$$
\xi_{\ell}=\sum_{j=1}^{p}\left(\xi \mid e_{j}\right) e_{j}, \sum\left|\left(\xi \mid e_{j}\right)\right|^{2}=\|\xi\|^{2}
$$

Now, $T=\left[T_{k l}\right] \in M_{n}(\mathscr{B}(\mathscr{H}, \mathscr{K}))$, and thus we see that

$$
T(\xi)=\left[\sum_{l, j} T_{k l}\left(e_{j}\right)\left(\xi_{l} \mid e_{j}\right)\right] \in M_{n, 1}\left(\mathscr{K}_{c}\right)
$$

Thus, at this point we decompose the matrix as

$$
\left[\sum_{l, j} T_{k l}\left(e_{j}\right)\left(\xi_{l} \mid e_{j}\right)\right]=\left[\left[T_{k l}\left(e_{1}\right)\right]_{k l} \cdots\left[T_{k l}\left(e_{p}\right)\right]_{k l}\right]\left[\begin{array}{c}
\left(\xi_{1} \mid e_{1}\right) \\
\vdots \\
\left(\xi_{l} \mid e_{j}\right) \\
\vdots \\
\left(\xi_{n} \mid e_{p}\right)
\end{array}\right]
$$

where

$$
\left[\left[T_{k l}\left(e_{1}\right)\right]_{k l} \cdots\left[T_{k l}\left(e_{p}\right)\right]_{k l}\right] \in M_{n, n p}\left(\mathscr{K}_{c}\right),\left[\begin{array}{c}
\left(\xi_{1} \mid e_{1}\right) \\
\vdots \\
\left(\xi_{l} \mid e_{j}\right) \\
\vdots \\
\left(\xi_{n} \mid e_{p}\right)
\end{array}\right] \in M_{n p, 1}
$$

We have the induced map $\widetilde{T}: \mathscr{H}_{c} \longrightarrow M_{n}\left(\mathscr{K}_{c}\right), \zeta \mapsto\left[T_{k l}(\zeta)\right]$, and therefore the first matrix becomes

$$
\widetilde{T}^{(1, p)}\left(\left[e_{1} \cdots e_{p}\right]\right)
$$

and if we write the coefficient matrix as

$$
\left[\left(\xi_{l} \mid e_{j}\right)\right]_{l, j}
$$

then we have the following inequalities;

$$
\|T(\xi)\| \leq\left\|\widetilde{T}^{(1, p)}\left(\left[e_{1} \cdots e_{p}\right]\right)\right\|\left\|\left[\left(\xi_{l} \mid e_{j}\right)\right]\right\| \leq\|\widetilde{T}\|_{c b}\left\|\left[e_{1} \cdots e_{p}\right]\right\|_{c}\|\xi\|=\|\widetilde{T}\|_{c b}\|\xi\|
$$

Thus, we have the desired equality and have shown that bounded linear operators between two Hilbert spaces are completely isometric to the completely bounded maps between the corresponding column Hilbert operator spaces.

We now have the following dualities;

$$
\left(\mathscr{H}_{c}\right)^{*} \cong \mathscr{C} \mathscr{B}\left(\mathscr{H}_{c}, \mathbb{C}\right) \cong \mathscr{B}(\mathscr{H}, \mathbb{C}) \cong \mathscr{B}\left(\mathscr{H}^{* *}, \mathbb{C}\right) \cong \mathscr{B}\left(\mathscr{H}^{*}, \mathbb{C}\right) \cong\left(\mathscr{H}^{*}\right)_{r}
$$

Letting $\mathscr{K}=\mathscr{H}^{*}$, we then have

$$
\left(\mathscr{K}_{r}\right)^{*} \cong \mathscr{H}_{c}^{* *} \cong \mathscr{H}_{c} \cong\left(\mathscr{K}^{*}\right)_{c},
$$

where these dualites are complete isometries.

Proposition 2.2. Given two Hilbert spaces \mathscr{H}, \mathscr{K} we have the following completely isometric identification;

$$
\mathscr{B}\left(\mathscr{K}^{*}, \mathscr{H}^{*}\right) \cong \mathscr{C} \mathscr{B}\left(\mathscr{H}_{r}, \mathscr{K}_{r}\right)
$$

By our dualites already stated, we then have the completely isometric identifications

$$
\left(\mathscr{H}_{c}\right)^{*} \cong\left(\mathscr{H}^{*}\right)_{r} \cong(\overline{\mathscr{H}})_{r}
$$

Proposition 2.3. Given two Hilbert spaces \mathscr{H}, \mathscr{K}, we have the completely isometric identification

$$
\overline{\mathscr{H}_{c}} \cong(\overline{\mathscr{H}})_{c}, \overline{\mathscr{H}_{r}} \cong(\overline{\mathscr{H}})_{r} .
$$

References

[1] Edward G Effros and Zhong-Jin Ruan. Operator spaces. 2000.

